—,	Mark each	statement	true or	false (2	points	each)
•	IVIAIN CACII	Statement	uueui	iaise (_	poma	Cacii

- 1. A grammar is ambiguous if it has two different derivations or two different parse trees for a sentence..
- 2. If a grammar is LR(I), but not LALR(I). There are not shift-reduce conflicts in its parsing table of LALR(1).

二、Single Choice (2 points each)

1. In the Top-Down Parsing, the action () will never be used.

[A] Shift [B] Match [C] Generate [D] Accept

2. In the Top-Down Parsing, the action () will never be used.

[A] Shift [B] Match [C] Generate [D] Accept

3. IF one CFG grammar contains two non-terminals 'A','B' and two terminal 'a','b', where 'A' is the start symbol, then the Follow set of 'A' may be()

[A] $\{a, b\}$ [B] $\{a, b, \$\}$ [C] $\{a, b, \epsilon\}$ [D] $\{a, b, B\}$

三、Questions (40 cents)

- 1. Convert the following regular expression (a|b)*abb(a|b)* to the minimum deterministic finite automata. (10 cents)
- 2. Consider the following grammar of simplified C declarations:

 $declaration \rightarrow type \quad var-list$ $type \rightarrow int \mid float$ $var-list \rightarrow identifier, var-list \mid identifier$ (a) Left factor this grammar. (5 cents)

- (b) Construct First and Follow sets for the nonterminals of the resulting grammar.(10 cents)
 - (c) Construct the LL(1) parsing table for the resulting grammar. (10 cents)
 - (d) Show the actions of the corresponding LL(1) parser, give the input string int x,y,z. (5 cents)